HIV Management Guidelines

HIV Management Guidelines

Other HIV-Associated Disease

Management > Other HIV-Associated Disease > References

References

1. Wang Y, Liu M, Lu Q, Farrell M, Lappin JM, Shi J, et al. Global prevalence and burden of HIV-associated neurocognitive disorder: A meta-analysis. Neurology. 2020 Nov 10;95(19):E2610–21.  

2. Ellis RJ, Marquine MJ, Kaul M, Fields JA, Schlachetzki JCM. Mechanisms underlying HIV-associated cognitive impairment and emerging therapies for its management. Vol. 19, Nature Reviews Neurology. Nature Research; 2023. p. 668–87.  

3. Sevigny JJ, Albert SM, McDermott MP, Schifitto G, McArthur JC, Sacktor N, et al. An Evaluation of Neurocognitive Status and Markers of Immune Activation as Predictors of Time to Death in Advanced HIV Infection. Arch Neurol. 2007 Jan 1;64(1):97.  

4. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99.  

5. Nightingale S, Ances B, Cinque P, Dravid A, Dreyer AJ, Gisslén M, et al. Cognitive impairment in people living with HIV: consensus recommendations for a new approach. Nat Rev Neurol. 2023 Jul 1;19(7):424–33.  

6. Cochrane CR, Angelovich TA, Byrnes SJ, Waring E, Guanizo AC, Trollope GS, et al. Intact HIV Proviruses Persist in the Brain Despite Viral Suppression with ART. Ann Neurol. 2022 Oct 1;92(4):532–44.  

7. Gray LR, Tachedjian G, Ellett AM, Roche MJ, Cheng WJ, Guillemin GJ, et al. The NRTIs Lamivudine, Stavudine and Zidovudine Have Reduced HIV-1 Inhibitory Activity in Astrocytes. PLoS One. 2013 Apr 16;8(4).  

8. Suzuki K, Zaunders J, Gates TM, Levert A, Butterly S, Liu Z, et al. Elevation of cell-associated HIV-1 transcripts in CSF CD4+ T cells, despite effective antiretroviral therapy, is linked to brain injury. Proc Natl Acad Sci U S A. 2022 Nov 29;119(48).  

9. Angelovich TA, Cochrane CR, Zhou J, Tumpach C, Byrnes SJ, Jamal Eddine J, et al. Regional Analysis of Intact and Defective HIV Proviruses in the Brain of Viremic and Virally Suppressed People with HIV. Ann Neurol. 2023 Oct 1;94(4):798–802.  

10. Manesh A, Barnabas R, Mani S, Karthik R, Abraham OC, Chacko G, et al. Symptomatic HIV CNS viral escape among patients on effective cART. International Journal of Infectious Diseases. 2019 Jul 1;84:39–43.  

11. Mukerji SS, Misra V, Lorenz D, Cervantes-Arslanian AM, Lyons J, Chalkias S, et al. Temporal Patterns and Drug Resistance in CSF Viral Escape Among ART-Experienced HIV-1 Infected Adults [Internet]. 2017. Available from: http://links.lww.com/QAI/A991 

12. Perez-Valero I, Ellis R, Heaton R, Deutsch R, Franklin D, Clifford DB, et al. Cerebrospinal fluid viral escape in aviremic HIV-infected patients receiving antiretroviral therapy: Prevalence, risk factors and neurocognitive effects. AIDS. 2019 Mar 1;33(3):475–81.  

13. Lenassi M, Cagney G, Liao M, Vaupotič T, Bartholomeeusen K, Cheng Y, et al. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic. 2010 Jan;11(1):110–22.  

14. Chandra PK, Rutkai I, Kim H, Braun SE, Abdel-Mageed AB, Mondal D, et al. Latent HIV-Exosomes Induce Mitochondrial Hyperfusion Due to Loss of Phosphorylated Dynamin-Related Protein 1 in Brain Endothelium. 2035; Available from: https://doi.org/10.1007/s12035-021-02319-8 

15. Rozzi SJ, Avdoshina V, Fields JA, Mocchetti I. Human immunodeficiency virus Tat impairs mitochondrial fission in neurons. Cell Death Discov. 2018 Dec 1;4(1).  

16. Teodorof-Diedrich C, Spector SA. Human Immunodeficiency Virus Type 1 gp120 and Tat Induce Mitochondrial Fragmentation and Incomplete Mitophagy in Human Neurons. J Virol. 2018 Nov 15;92(22).  

17. Thangaraj A, Periyasamy P, Liao K, Bendi VS, Callen S, Pendyala G, et al. HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy. 2018 Sep 2;14(9):1596–619.  

18. Kraft-Terry SD, Buch SJ, Fox HS, Gendelman HE. A Coat of Many Colors: Neuroimmune Crosstalk in Human Immunodeficiency Virus Infection. Neuron. 2009 Oct;64(1):133–45.  

19. Allen Reeves A, Fuentes A V, Caballero J, Thomas JE, Mosley II JF, Harrington C. Neurotoxicities in the treatment of HIV between dolutegravir, rilpivirine and dolutegravir/rilpivirine: a meta-analysis. Sex Transm Infect. 2021 Jun;97(4):261–7.  

20. Latronico T, Pati I, Ciavarella R, Fasano A, Mengoni F, Lichtner M, et al. In vitro effect of antiretroviral drugs on cultured primary astrocytes: analysis of neurotoxicity and matrix metalloproteinase inhibition. J Neurochem. 2018 Feb 9;144(3):271–84.  

21. Kakuda TN. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther. 2000 Jun;22(6):685–708.  

22. Wright EJ, Grund MB, Robertson K, Brew BJ, Roediger M, Bain MP, et al. Cardiovascular risk factors associated with lower baseline cognitive performance in HIV-positive persons Supplemental data at www.neurology.org [Internet]. 2010. Available from: www.neurology.org 

23. Mccutchan JA, Marquie-Beck JA, Fitzsimons CA, Letendre MSL, Ellis RJ, Heaton RK, et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder [Internet]. 2012. Available from: www.neurology.org 

24. Yu B, Pasipanodya E, Montoya JL, Moore RC, Gianella S, McCutchan A, et al. Metabolic Syndrome and Neurocognitive Deficits in HIV Infection. J Acquir Immune Defic Syndr (1988). 2019 May 1;81(1):95–101.  

25. Mamik MK, Asahchop EL, Chan WF, Zhu Y, Branton WG, McKenzie BA, et al. Insulin treatment prevents neuroinflammation and neuronal injury with restored neurobehavioral function in models of HIV/AIDS neurodegeneration. Journal of Neuroscience. 2016 Oct 12;36(41):1683–95.  

26. Calon M, Neuroscience M(, Menon K, Carr A, Henry RG, Rae CD, et al. Additive and Synergistic Cardiovascular Disease Risk Factors and HIV Disease Markers’ Effects on White Matter Microstructure in Virally Suppressed HIV [Internet]. 2020. Available from: www.jaids.com 

27. Letendre S, Bharti A, Perez-Valero I, Hanson B, Franklin D, Woods SP, et al. Higher Anti-Cytomegalovirus Immunoglobulin G Concentrations Are Associated with Worse Neurocognitive Performance during Suppressive Antiretroviral Therapy. Clinical Infectious Diseases. 2018 Aug 16;67(5):770–7.  

28. Lupia T, Milia MG, Atzori C, Gianella S, Audagnotto S, Imperiale D, et al. Presence of Epstein-Barr virus DNA in cerebrospinal fluid is associated with greater HIV RNA and inflammation. AIDS. 2020 Mar 1;34(3):373–80.  

29. Aung HL, Siefried KJ, Gates TM, Brew BJ, Mao L, Carr A, et al. Meaningful cognitive decline is uncommon in virally suppressed HIV, but sustained impairment, subtle decline and abnormal cognitive aging are not. EClinicalMedicine. 2023 Feb 1;56.  

30. Aung HL, Gates TM, Mao L, Brew BJ, Rourke SB, Cysique LA. Abnormal cognitive aging in people with HIV: evidence from data integration between two countries’ cohort studies. AIDS. 2022 Jul 1;36(8):1171–9.  

31. Eggers C, Arendt G, Hahn K, Husstedt IW, Maschke M, Neuen-Jacob E, et al. HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. Vol. 264, Journal of Neurology. Dr. Dietrich Steinkopff Verlag GmbH and Co. KG; 2017. p. 1715–27.

32. Aung HL, Bloch M, Vincent T, Quan D, Jayewardene A, Liu Z, et al. Cognitive ageing is premature among a community sample of optimally treated people living with HIV. HIV Med. 2021 Mar 1;22(3):151–64.  

33. Chaganti J, Brew BJ. MR spectroscopy in HIV associated neurocognitive disorder in the era of cART: a review. Vol. 18, AIDS Research and Therapy. BioMed Central Ltd; 2021.  

34. Hagberg L, Cinque P, Gisslen M, Brew BJ, Spudich S, Bestetti A, et al. Cerebrospinal fluid neopterin: An informative biomarker of central nervous system immune activation in HIV-1 infection. Vol. 7, AIDS Research and Therapy. 2010.  

35. Ciccarelli N, Fabbiani M, Colaigli M, Trecarichi EM, Silveri MC, Cauda R, et al. Revised central nervous system neuropenetrationeffectiveness score is associated with cognitive disorders in HIV-infected patients with controlled plasma viraemia. Antivir Ther. 2013;18(2):153–60.  

36. Fabbiani M, Grima P, Milanini B, Mondi A, Baldonero E, Ciccarelli N, et al. Antiretroviral neuropenetration scores better correlate with cognitive performance of HIV-infected patients after accounting for drug susceptibility. In: Antiviral Therapy. International Medical Press Ltd; 2015. p. 441–7.  

37. Casado JL, Marín A, Moreno A, Iglesias V, Perez-Elías MJ, Moreno S, et al. Central nervous system antiretroviral penetration and cognitive functioning in largely pretreated HIV-infected patients. J Neurovirol. 2014 Feb;20(1):54–61.  

38. Vassallo M, Fabre R, Durant J, Lebrun-Frenay C, Joly H, Ticchioni M, et al. A decreasing CD4/CD8 ratio over time and lower CSF-penetrating antiretroviral regimens are associated with a higher risk of neurocognitive deterioration, independently of viral replication. J Neurovirol. 2017 Apr 1;23(2):216–25.  

39. Ghate M, Mehendale S, Meyer R, Umlauf A, Deutsch R, Kamat R, et al. The effects of antiretroviral treatment initiation on cognition in HIV-infected individuals with advanced disease in Pune, India. J Neurovirol. 2015 Aug 28;21(4):391–8.  

40. Smurzynski M, Wu K, Letendre S, Robertson K, Bosch RJ, Clifford DB, et al. Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS. 2011 Jan 28;25(3):357–65.  

41. Carvalhal A, Gill MJ, Letendre SL, Rachlis A, Bekele T, Raboud J, et al. Central nervous system penetration effectiveness of antiretroviral drugs and neuropsychological impairment in the Ontario HIV Treatment Network Cohort Study. J Neurovirol. 2016 Jun 1;22(3):349–57.  

42. Caniglia EC, Cain LE, Justice A, Tate J, Logan R, Sabin C, et al. Antiretroviral penetration into the CNS and incidence of AIDS-defining neurologic conditions. 2014.  

43. Wilson MJ, Martin-Engel L, Vassileva J, Gonzalez R, Martin EM. An investigation of the effects of antiretroviral central nervous system penetration effectiveness on procedural learning in HIV+ drug users. J Clin Exp Neuropsychol. 2013 Nov 1;35(9):915–25.  

44. Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, et al. Validation of the CNS penetration-effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2008 Jan;65(1):65–70.  

45. Kahouadji Y, Dumurgier J, Sellier P, Lapalus P, Delcey V, Bergmann J, et al. Cognitive function after several years of antiretroviral therapy with stable central nervous system penetration score. HIV Med. 2013 May;14(5):311–5.  

46. Cross HM, Combrinck MI, Joska JA. HIV-associated neurocognitive disorders: Antiretroviral regimen, central nervous system penetration effectiveness, and cognitive outcomes. South African Medical Journal. 2013 Sep 18;103(10):758.  

47. Vassallo M, Durant J, Biscay V, Lebrun-Frenay C, Dunais B, Laffon M, et al. Can high central nervous system penetrating antiretroviral regimens protect against the onset of HIV-associated neurocognitive disorders? AIDS. 2014 Feb 20;28(4):493–501.  

48. Letendre SL, Chen H, Mckhann A, Roa J, Vecchio A, Daar ES, et al. Antiretroviral Therapy Intensification for Neurocognitive Impairment in Human Immunodeficiency Virus. Clinical Infectious Diseases. 2023 Sep 15;77(6):866–74.  

49. Brew BJ, Clifford DB. Antiretroviral therapy intensification for HIV-associated neurocognitive disorder? AIDS. 2023 Nov 1;37(13):2095–6.  

50. Manesh A, Barnabas R, Mani S, Karthik R, Abraham OC, Chacko G, et al. Symptomatic HIV CNS viral escape among patients on effective cART. International Journal of Infectious Diseases. 2019 Jul 1;84:39–43.  

51. Chaganti J, Marripudi K, Staub LP, Rae CD, Gates TM, Moffat KJ, et al. Imaging correlates of the blood-brain barrier disruption in HIV-associated neurocognitive disorder and therapeutic implications. AIDS. 2019 Oct 1;33(12):1843–52.  

52. Central Nervous System Complications in HIV Disease- HIV-Associated Neurocognitive Disorder.  

53. Stroffolini G, Lazzaro A, Barco A, Pirriatore V, Vai D, Giaccone C, et al. Changes in Cerebrospinal Fluid, Liver and Intima-media-thickness Biomarkers in Patients with HIV-associated Neurocognitive Disorders Randomized to a Less Neurotoxic Treatment Regimen. Journal of Neuroimmune Pharmacology. 2023 Dec 1;  

54. Bowen LN, Smith B, Reich D, Quezado M, Nath A. HIV-associated opportunistic CNS infections: Pathophysiology, diagnosis and treatment. Vol. 12, Nature Reviews Neurology. Nature Publishing Group; 2016. p. 662–74.  

55. Reimer-Mcatee M, Ramirez D, Mcatee C, Granillo A, Hasbun R. Encephalitis in HIV-infected adults in the antiretroviral therapy era. J Neurol. 2023 Aug 1;270(8):3914–33.  

56. Liu H, Dong D. MRI of neurosyphilis with mesiotemporal lobe lesions of “knife-cut sign” on MRI: A case report and literature review. Heliyon. 2023 Apr 1;9(4).  

57. Jarvis JN, Lawrence DS, Meya DB, Kagimu E, Kasibante J, Mpoza E, et al. Single-Dose Liposomal Amphotericin B Treatment for Cryptococcal Meningitis. New England Journal of Medicine. 2022 Mar 24;386(12):1109–20.  

58. Donovan J, Bang ND, Imran D, Nghia HDT, Burhan E, Huong DTT, et al. Adjunctive Dexamethasone for Tuberculous Meningitis in HIV-Positive Adults. New England Journal of Medicine. 2023 Oct 12;389(15):1357–67.  

59. Koh MJ, Merrill MH, Koh MJ, Stuver R, Alonso CD, Foss FM, et al. Comparative outcomes for mature T-cell and NK/T-cell lymphomas in people with and without HIV and to AIDS-defining lymphomas. Blood Adv. 2022 Mar 8;6(5):1420–31.  

60. Brandsma D, Bromberg JEC. Primary CNS lymphoma in HIV infection. In 2018. p. 177–86.  

61. Levin SN, Lyons JL. HIV and spinal cord disease. In: Handbook of Clinical Neurology. Elsevier B.V.; 2018. p. 213–27.  

62. Petito CK, Navia BA, Cho ES, Jordan BD, George DC, Price RW. Vacuolar Myelopathy Pathologically Resembling Subacute Combined Degeneration in Patients with the Acquired Immunodeficiency Syndrome. New England Journal of Medicine. 1985 Apr 4;312(14):874–9.  

63. Prakhova L, Ilves A, Kizhlo S, Savintseva Z. Successful treatment of human immunodeficiency virus-associated highly active antiretroviral therapy-resistant vacuolar myelopathy with intravenous immunoglobulin. Ann Indian Acad Neurol. 2020 Mar 1;23(2):220–2.

64. Timtim SH, Simmons AN, Hays C, Strigo I, Sorg S, Ellis R, et al. HIV peripheral neuropathyrelated degeneration of white matter tracts to sensorimotor cortex. J Neurovirol. 2022 Dec 1;28(4–6):505–13.  

65. Motwani L, Asif N, Patel A, Vedantam D, Poman DS. Neuropathy in Human Immunodeficiency Virus: A Review of the Underlying Pathogenesis and Treatment. Cureus. 2022 Jun 13;  

66. Nikolaidis I, Karakasi M –V, Pilalas D, Boziki M –K, Tsachouridou O, Kourelis A, et al. Association of cytokine gene polymorphisms with peripheral neuropathy susceptibility in people living with HIV in Greece. J Neurovirol. 2023 Oct 1;29(5):626–39.  

67. Gaff J, Octaviana F, Jackaman C, Kamerman P, Papadimitriou J, Lee S, et al. Expression in skin biopsies supports genetic evidence linking CAMKK2, P2X7R and P2X4R with HIV-associated sensory neuropathy. J Neurovirol. 2023 Jun 1;29(3):241–51.  

68. Lückemeyer DD, Prudente AS, de Amorim Ferreira M, da Silva AM, Tonello R, Junior SJM, et al. Critical Pronociceptive Role of Family 2 Voltage-Gated Calcium Channels in a Novel Mouse Model of HIV-Associated Sensory Neuropathy. Mol Neurobiol. 2023 May 1;60(5):2954–68.  

69. Kieburtz K, Simpson D, Yiannoutsos C, Max MB, Hall CD, Ellis RJ, et al. A randomized trial of amitriptyline and mexiletine for painful neuropathy in HIV infection. Neurology. 1998 Dec;51(6):1682–8.  

70. Simpson DM, Brown S, Tobias J. Controlled trial of high-concentration capsaicin patch for treatment of painful HIV neuropathy. Neurology. 2008 Jun 10;70(24):2305–13.  

71. Simpson DM, Rice ASC, Emir B, Landen J, Semel D, Chew ML, et al. A randomized, double-blind, placebo-controlled trial and open-label extension study to evaluate the efficacy and safety of pregabalin in the treatment of neuropathic pain associated with human immunodeficiency virus neuropathy. Pain. 2014 Oct;155(10):1943–54.  

72. Simpson DM, McArthur JC, Olney R, Clifford D, So Y, Ross D, et al. Lamotrigine for HIV-associated painful sensory neuropathies. Neurology. 2003 May 13;60(9):1508–14.  

73. Jang HN, Oh TJ. Pharmacological and Nonpharmacological Treatments for Painful Diabetic Peripheral Neuropathy. Vol. 47, Diabetes and Metabolism Journal. Korean Diabetes Association; 2023. p. 743–56.  

74. Hahn K, Arendt G, Braun JS, Von Giesen HJ, Husstedt IW, Maschke M, et al. A placebo-controlled trial of gabapentin for painful HIV-associated sensory neuropathies. J Neurol. 2004 Oct;251(10):1260–6.  

75. Wang Y, Yang J, Wen Y. The Peculiarity of Infection and Immunity Correlated with Guillain-Barré Syndrome in the HIV-Infected Population. Vol. 12, Journal of Clinical Medicine. MDPI; 2023.  

76. Wulff EA, Wang AK, Simpson DM. HIV-Associated Peripheral Neuropathy. Drugs. 2000 Jun;59(6):1251–60.  

77. Gabbai AA, Castelo A, Oliveira ASB. HIV peripheral neuropathy. In 2013. p. 515–29.  

78. Palma P, Costa A, Duro R, Neves N, Abreu C, Sarmento A. Mononeuritis multiplex: an uncommon neurological manifestation of cytomegalovirus reactivation in an HIV-infected patient. BMC Infect Dis. 2018 Dec 12;18(1):554.  

Scroll to Top